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Asymptotic Fixed Point Theorems and Periodic

Systems of Functional-Differential Equations

by

G. Stephen Jones*

A theorem asserting the existence of a fixed point under a
mapping f Dby utilizing information known about the nth power com-
posite mapping £ for n sufficiently large, we shall suggestively
describe as an asymptotic fixed point theorem. h shall denote the
operation defined on the set of subsets of a linear topological space
which associates with each such subset its closed convex hull. The
following theorem is an example of a useful fixed point theorem of the

asymptotic type which is an easy consequence of Tychonoff's theorem [1].

Theorem 1. Iet S be a closed convex subset of a complete
locally convex linear topological space X and let f be a continuous
mapping of S into X with f£(s)( s. If (fh)k(s) for some positive

integer k 1is contained in a compact set, then f has a fixed point in

The difference between the above theorem and the usual Tychonoff
theorem is, of course, that the image of S under f is not required

to be contained in a compact set. Iet us illustrate the usefulness of

* This research was supported in part by the United States Air Force
through the Air Force Office of Scientific Research, Office of Aerospace
Research, under contract No. AF 49(638)-382, in part by the Office of
Naval Research under contract Nonr-5695(00), and in part by the Natiomal
Aeronautics and Space Administration under contract No. NASr-103. Repro-
duction in whole or in part is permitted for any purpose of the United
States Government.
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this distinction by an investigation concerning the existence of periodic
solutions of differential equations with hereditary dependence. We begin
by defining C(u) to be the space of continuous functions mapping a
closed interval u into Rn (n-dimensional Euclidean space). A topology

on C{u) is specified by the norm functional

loll = sup(lo,(6)| : 1 =1,00., 0, 0 in u},

defined for each ¢ in C(u). Iet Vv be a closed interval contained

in u and let U be a subset of C(u). U is said to be of compact
restriction on v if the functions in U restricted to v form a com-
pact subset of C(v). For each b >0 1let C(u, b) C c(u) be such that

@ in ¢(u, b) implies |lp|| S b. For specified positive constants T and
b, let F(t, ¥) be a function mapping [0, ) x C([-7, 0], b)) into

Rn which is continuous in each variable separately. We shall relate
Theorem 1 to the question of existence of periodic solutions of Tunctional-
differential equations of the form

%(6) = F(t, Hx), (1)

where Htx denotes the translation to [~T, O] of the restriction of
the function x to [t -7, T]. That is, Hx(6) = x(t + &) for ¢
in [-T, 0]. %(%) in equation (1) is understood to denote the right
hand derivative of x at t.

Iet us assume that corresponding to each initial function in

C, = c([~r, 01, b)) that equation (1) has a unique solution defined for

all t =z 0. That is, for each ¢ in C, there exists a unique function
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x such that the restriction of x to [-1, 0] is ¢ and

x(t) = F(%, Htx) for all t 2 0. PFurthermore, let us assume that
these solutions depend continuously on their corresponding initial
functions and that F(t, ¥) is a periodic function of t of period
w >0 for each fixed V¢ in Co.

Now defining the mapping T for all ¢ in Co by the formula

T(p)(8) = x(w + 8), 6 in [, O], (2)

where x 1is the solution of equation (1) corresponding to ¢, it is
clear from our uniqueness assumption for solutions that a fixed point |
under T implies the existence of a periodic solution for equation (1)

of period w. Iet U denote the set of all solutions of equation (1)

restricted to [0, w] which correspond to initial functions in Cge

If U is comtained in a compact subset of C([0, w], b)) and w =T,
then it is clear from standard theorems that such a fixed point under T
exists, However, if w < T it is only clear that Tk has a fixed point
when k is an integer such that kw = t. To see that Theorem 1 allows
us to drop any restriction on the relationship between T and ® in
concluding the existence of a fixed point under T, we bave only to
verify that U being contained in a compact subset of C([0, wl, bl)
implies (Th)k(Co) is compact for some integer k. But let k be the
smallest integer such that kw 2 T and observe that for each integer

j2 1 the set (Th)‘j(co) is of compact restriction on [-jw, O] n [~7, Ol.

k
In particular, therefore, since ko 2 T we have that (Th) (CO) is
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contained in a compact subset of CO. Thus we have proved that the

following theorem is a consequence of Theorem 1.

Theorem 2. Iet U denote the set of all solutions of equation
(1) restricted to [0, w] which correspond to initial functions in Cge
If U is contained in a compact subset of C([0, w], bl)’ then equa-~
tion (1) has a periodic solution of period w.

To prove Theorem 1 we simply observe that since § is closed
and convex that fh(S) ( S and consequently (fhk)(S) is contained in

(£0)%"1(s). Hence

£(h(n)(8)) C (m)5(s) C n(en)*(s).

Since it is verified in [2] that the compactness of (fh)k(s) implies
h(fh)k(s) is compact, the existence of a fixed point under f con-
tained in (hf)k(s) follows immediately from Tychonoff's theorem.

A theorem which is essentially equivalent to Theorem 2 but which may

be mre convenient for some purposes is as follows.

H
Theorem 2!, Iet Cl be a closed convex subset of Co and let

02 be a subset of Cl which is of compact restriction on

[w, 0} n [-1, O]. Suppose that H x is contained in C, for every

2

solution x of equation (1) corresponding to an initial function in

C Then equation (1) bas a periodic solution of period ®w correspond-

l.
ing to an initial function in 02.
A simple but useful corollary to Theorem 2' may be obtained using a

Lipschitz condition to establish compactness.
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Corollary 1. Iet C, be a closed convex subset of CO and

1
suppose that qu is contained in Cl for every solution x of
equation (1) corresponding to an initial function in Cl' If there
exists a continuous function L(t) such that ¢, and @, in C; and

t in [0, w] imply

[F(t, @) - F(t, @) = L(t)lo; - o, ll,

then equation (1) has a periodic solution of period corresponding

to an initial funetion in Cl'

Proof. Iet o@*¥ be a fixed element in Cl and let x* be the
corresponding solution of equation (1). For arbitrary ¢ in Cy and

the corresponding solution x, we have

t
x(£) = 9(0) + [ ¥(s, Hx)ds,
0

and

t
x(t) - x*(t) = 9(0) = 9*(0) + [ (F(s,Hx) - F(s,Hx*))ds.
0
Using our Lipschitz condition for t in [0, w] it follows that

t
[x(t) - x*(t)| = |e(0) - o*(0)] + fOL(S)Ilex -H x¥lds

and

t
s - sgerl 5 o - ¥l + J 1(0) s - Fgxelos.
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Hence using Gronwall's lemma we conclude that
t
lEx - Hx* = flp - o*|| exp {fOL(s)ds}.

Now for t, amd t, in [0, w] we have

2
t2
x(tg) - x(tl) = [ F(s, H_x)ds
t
1
and
t2 t2
lx(ty) -x(t)| = J |P(s,Bx*)|ds + [ L(s)|Hx - H x*[lds
t t
1 1
t2 t2 s
s [ [F(s,Ex*)]as + [lp - o*|| [ L{s)exp(/ L(u)du}ds
tl tl 0
t2 t2 tl
= f IF(S,HSX*)Ids + 2b, [exp([ L(s)ds} - exp{/ L(s)as}l.
t 0 0
1

From the integrability of F(t, H x*) and L(t) it follows immediately
that the set of solutions of (1) corresponding to initial functions in
Cl and restricted to [0, w] form an equicontinuous family of functions.
Therefore by the Arzelh-Ascoli theorem this class of restricted solutions
is compact, and the application of Theorem 2! completes our proof.

It often happens in the literature that a condition of uniform
(with respect to t and the space of initial functions) asymptotic stabi-

1lity for solutions of equations such as (l) is useful in concluding that
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a transformation such as T (defined by (2)) maps an appropriate
set of initial functions into itself. For example, this is the case
for the theorems concerned with periodic solutions of perturbed systems
contained in [3]. One may observe that in many of these situations the
set of initial functions C o considered under the transformation T
may be replaced by a compact set h(Th)k(Co) and by so doing an explicit
assumption of uniform asymptotic stability is replaceable by an assump-
tion of asymptotic stability only.

Another very interesting asymptotic fixed point theorem which is
a significant generalization of the Schauder theorem is presented by

Browder in [4] and is as follows:

Browder's Theorem. lIet S and S. be nonvoid open convex sub-

1
sets of a Banach space X, So 8 closed convex subset of X,
SOC SlC S, £ a compact mapping of S into X. Suppose that for a
positive integer m, ™ is well-defined on Sl, .TJ fJ(So) C Sl’
while £7(s,)( §,. Then f bas a fixed point in JZZ.

The term compact mapping used in the above theorem implies that
f 4is continuous amd f maps S into a compact subset of X. Interest-
ing applications of Browder's theorem may be found in [5] and [6].

Iet us now consider the system
x(t) = Xo[t:x(t)) x(t-r)] + ¢ Xl[t,x(t), x(t-r), €l, (3)

where Xo(t, u, v) and Xl(t, u, v, €) are n-dimensional vector func-

tions continuous in their respective arguments separately, periodie in
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t of period @, and defined for t 20, € small, and |u| + |v| <M
for some constant M > 0. Furthermore, let us assume that for some
positive continuous funetion L(t) and every (ul, vl) and (u2, v2)

in the domain of Xo’
|x0(t’ul’vl) - Xo(t)u2’v2)| = L(t)(|ul - ugl + Ivl = VEI)'

The following theorem is derived from results presented and proved by

using Browder's theorem in [7].

Halanay's Theorem. Iet w >r 2 0 and let the equation

¥(t) = x [t y(t), v(t - r)] (%)

have a uniformly asymptotically stable periodic solution Yo of period
o such that |yo(t)| + Iyo(t -1t)| <M for t in [0, w]. Suppose
that for every continuous function ¢ defined on [-r, O] such that
lp(8) - yo(ao)(e)l <b, for 6 in [-r, O] there corresponds a unique
solution x of equation (3) and that these solutions depend continuously
on their initial functions. Then for € sufficiently small equation (5)

bas a periodic solution x_ of period  and lim x (%) = yo(t).
€ -0

Subsequently in this paper we shall present an asymptotic fixed
point theorem on a space of continuous functions and construct its proof
through the use of Browder?!s theorem and the Arzelﬁ-Ascoli theorem. We
shall then use this new theorem and prove a theorem along the lines of

Halaney's theorem but stronger and more general. In particular, we will
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prove a theorem which is valid for a much broader class of functional-
differential equations than represented by (3) and which impose no con-
dition on the relationship between r and w, and require only the
existence of a closed convex discretely asymptotically stably nonincreasing
set for the unperturbed equation.

Iet I denote the closed interval [al, a2], a, >a,, and
let Y denote a finite dimensional Banach space. For s in Y
let |s| denote the norm of s. C[I, Y] shall denote the set of con-
tinuous funetion mepping I into Y, amd || | denotes the norm func-

tiomal defined for arbitrary x in C[I, Y] by the formula
Ix|| = max{|x(t)| : t in 1I}.

Theorem 3. For a specified positive constant b let XC C[I, Y]
be such that x in X, t#t? and t, t' in I imply
|x(t) - x(+')] <Dbl|t - t'|, and let £ be a continuous function mapping
an open convex subset B of X into X. ILet By By, and B5 be non-
void bounded open convex subsets of X, BO a closed convex subset of
clI, Y] contained in X, and let B ( B, B ( B,, and B,( 135( B.
If for some positive integer m,  is well-defined on B5, fv(Bl) C B2
for v= 1, ..., m -1, and fm(BB)C B,» then f has a fixed point in
B L d
o

Yk+l

Let denote the set of elements x = (xo, -+ey X ) where

x; 1is contained in the Banach space Y for i = 1,2, ..., k. 1In pre-

paration to proving Theorem 3 it is convenient to first prove the follow-

ing lemma which is an easy consequence of Browder's theorem.
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lemma 1. Iet X* € Y50 be the set of all elements

x=(xo, .++y X, ) such that |xi-xj| <%li-j| for i # j and

i,j =0,1, ..., k where 7 is some positive constant. Iet U and U,
be nonvoid bounded open convex subsets of Yk+l and let Vo be a closed
convex subset such that x in V_ implies |x:.L - le s —%Ii - 3| for
i,j=0,1, ..., k where 7y > 7, >0. Iet V =1UnNX* Vv, = Ui N Xx,
and VOC VlC V. If f is a continuous mapping of V into X* and
for some positive integer m, % is well-defined on Vl, fv(Vo)(: Vl
for v=1, ..., m-1, and fm(Vj) C V,, then f bhas a fixed point in

V.
0

Proof. let x = (xo, ceny xk) and y = (yo, ceey yk) be arbi-
trary points in X* and let A be contained in the interval [0, 1].

Then for i,J in (0,1, ..., k) we have

[L)xg + Ay ] - DAy + o] s (An) =g =]+ Ay vyl < L1 - 4l

Hence X¥* is convex and consequently so are V, Vl and Vo' Now con-

sider arbitrary x in X* and let

gklxi - x|

5 = max 9 g, ifJd, i,J=0,1, ..., Kk,

) — T
\“lJ

and N(0) = {z : |z] < I;%Eé}. For y in x + N(O) we have
|yi - yjl Sl - le + lzi - zjl,
where z is in N(0). Hence y in x + N(0) dimplies

for 1 #j, i, =0,1, ..., k, so X% is open and consequently so are

vV and V,. Therefore, invoking Browder's theorem it follows immediately
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that f has a fixed point in VO and our lemms is proved.
Now proceeding with our proof of Theorem 3 we associate with

each positive integer k +the partition determined by the set

of the interval I = [al, a2] and for each x in X let pk(x) de-

note the order=4d set
(XO’ xl’ seey Xk) = (X(to), X(tl), seey X(tk)).

We define x and y in X as k-equivalent if pk(x) = pk(y) and for
each x in X we denote by gk(x) the set of all elements in X

which are k-equivalent to x. Since Bo and -B'2 are closed, uniformly
bounded, and equicontinuous families of functions in C[I, Y] we have

by a straightforward generalization of the Arzeld-Ascoli theorem as stated
in Kolmogorov and Fomin [8] that B, and §2 are compact. Consequently
for all k chosen sufficiently large we have

S, = [gk(x) : x in Bo} CBl
and
S, = [gk(x) :x in B2}C Bj'

Hence our hypotheses concerning f imply that for k sufficiently large

fJ(So)C s, for j=1, ..., m1, asd £(s,)C 8.
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Letting Q= (gk(x) : x in X} we define the mapping

¥ioo ¥ by the formula

W(gk(x)) = pk(x) = x¥,

Inducing the topology of Yk+l on Qk it is obvious that V¥ 1is a homeo-
morphism. Since BC X and x in X dmplies [x(t;) - x(t,)| <® [t -, 1,
it is also clear that B* = [W(gk(X)) : x in B} is contained in X*

vhere X* 1is the set of all elements x* in Y '~ such that

=t - xgl <fli-3] for 1,3=0,1, «ee, kX, i#J, and rv=D(a, -a).
Iet x* and y* be arbitrary in B* and let A be any number in the

interval [0, 1]. We have

(L - a)x* + Ay

(1 = M¥(g (x)) +r V(e (¥))
¥((1- gy (x) + rg (%))
= ¥(g, ((L - M)x +2y))

= ¥(g,(2))

it

where, since B is convex, =z 1is contained in B. Hence

(L - A)x* + Ay* is contained in B* and it follows that B¥* is con-
vex. Also B open in X clearly implies B¥ is open in X¥. De-
tining B¥ = {W(gk(x)) :x in B} and BY = {W(gk(x)) : x in B}
it follows from essentially the same argument used with B* that Bg

is closed, bounded, and convex and BX 1s open, bounded, and convex.
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Now for k sufficiently large we have wa’l(Bg) = fJ(SO)(: S,

for §j=1,2, ..., m-=1l, and fm\lf-l(B?é)C fm(sz)c SO'

; 3
eI (BE) = (e (30 C w(sy) = By

]

and

) = (v l) (3) C ¥(s) = Bx
2 2 o) o

Since Bo is a compact subset of X it follows that there exists a
positive number bo <b such that x in Bo implies
|x(ti) - x(tj)l = b, lti - tj] for i,3 = 0,1, ..., k. Hence tF is
clear that BY* is such that x* in B¥ implies Ir:’{ - x§| s —-]% 1 - 3l
where y_ = bo(a2 - al) < Y. We have, therefore, from Iemma 1 that for

each k sufficiently large there exist xl*{ in Bg such that
ey (xx) = xx
*k k

and consequently

£ (E)) = V()

Thus for each k sufficiently large there exist x

X in Bo such that

x, 1is contained in f(g(x.k)). But considering the sequence ({x}

k
generated as k +tends to infinity we see that {xk} being contained in
the compact set Bo implies it must contain a subsequence [xp} which

converges to a point X in Bo. We also observe that

3 - 3 - - s |IX - + =,
- gl s I -l + ey - w5 IF - x )+ 2
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Hence clearly gp(xp) must also converge to X. Therefore, since x
is contained in f(g(xp)) and f 1is continuous, we may conclude
that f(X) = X and our theorem is proved.

We remark that the technique illustrated in Theorem 4 can be
very useful in a wide variety of asymptotic problems. For example,
the principal result contained in [5] utilizes asymptotic instability
and a similar technique. Also a theorem giving a result very much like
the result of Theorem 4 but associated with a more general concept of
perturbations is presented in [9].

Iet V be a subset of CO and for every positive number €
let N (V) denote the set {y : [y - x[| <e, x in V}. Vv will be
said to be strictly contained in a set U if there exists a number
8 >0 such that Ng(V)( U. Proceeding now with our discussion of
periodic solutions of functiomal-differential equations we define several
notions of stability for sets associated with functional equations of
the form of equation (1). First of all a set V 1is called a discretely
stably bounded set of equation (1) if the following condition is satis-
fied.

(a) There exist a constant b 2 0 such that for every € >0
there exists a & > 0 such that if ¢ is contained in NS(V) and X
is a solution of equation (1) corresponding to ¢, then Ehsx is con-
tained in N, (V) for all positive integers k.

It is clear that if equation (1) has a periodic solution of
period w which is stable in the usual sense, then it has a discretely

stably bounded set with b = 0 and consisting of a single element. It
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is also clear that if condition (a) is satisfied then for every posi-
tive integer n the mapping T, with T defined by (2), sends V
into m Hence if V 1is closed and convex, b = 0, and an appro-
priate Lipschitz condition is satisfied, the existence of a periodic
solution of period ® follows from Corollary 1. If b denotes the
smallest nonnegative number for which condition (a) is satisfied, then
we will refer to 'ﬁb—(ﬂ as the domain of expansion of V.

A set V is called a discretely asymptotically stably nonincreasing
set of equation (1) if condition (a) together with the following condition
is satisfied.

(b) There exist a sequence ¢ of positive integers tending to
infinity and a constant ¢ >0 such that if N (V) is the domain of
expansion of V, @ is contained in N _H;(V) , X is the solution of
equation (1) corresponding to ¢, and 17 is an arbitrary positive
constant, then for all integers k in ¢ and sufficiently large, kax
is contained in Nn(V).

We may observe that if equation (1) has a periodic solution of
period ® which is asymptotically stable in the usual sense, then it
has a discretely asymptotically stably nonincreasing set with b = 0,

g the set of all positive integers, and consisting of a single element.
We also note that the notion of asymptotically stably nonincreasing sets
for functional-differential equations is similar in nature to a condi-
tion of ultimate boundedness (in the sense of Yoshizawa) on the solu-
tions of such systems. Sets having the properties of N +§(V) , as
specified in (b), will be called domains of discrete asymptotic attrac-

tion for V.
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A set V 1is called a uniformly discretely asymptotically
stable nonincreasing set of equation (1) if condition (a) together
with the following condition is satisfied.

(¢) There exist a sequence ¢ of positive integers tending
to infinity and a constant ¢ > 0 such that if E;IVT is the domain
of expansion of V and 1 is an arbitrary positive constant, then
there exists a positive integer q in o such that for all integers
k 2 g and contained in ¢ ,H_x is contained in Nn(V), where x

ka

is a solution of equation (1) corresponding to an initial function

in Nb+§(V).
As a simple application of Browder’s theorem we have the follow-

ing result.

Theorem 4. Iet equation (1) have a convex uniformly discretely
asymptotically stably nonincreasing set V with the domain of expan-
sion of its domain of expansion strictly contained in Co. Furthermore
suppose the mapping T as defined by (2) is of compact restriction
on [-7T, 0]ln [-w, O]. Then equation (1) has a periodic solution of

period .

Proof. 1Iet NBZVS denote the domain of expansion for V and
for each t 2 0 let gt denote the largest integer multiple of
not exceeding t. Our hypotheses clearly imply the existence of a

sequence ¢ of positive integers tending to infinity and a constant
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¢ >0 such that if ¢ is contained in Nb’g(V) and 17 is an arbi-
trary positive constant, then there exists an integer g é(% and
contained in ¢ such that for all £y 2 g with §t/‘° contained in
o and all solutions x of equation (1) corresponding to an initial

function in N.b+§(V), we have H, x contained in Nn(V). Since

&
Nb(V) is strictly conmtained in Co’ there exists a number & such that
0<d<¢t amd N (V)C C,. Iet & with 0< 8 < © be such that

¢ in N, (V) implies H, x is contained in (V) for all t = 0.

8, £, Nors
Setting 1 = 51/2 and interpreting our observations in terms of the
operator T, we may assert that TJ(N5 () C N,s(V) forall jz1
1
and Tq(l\lb_'_B(V)) C Nps (V). Furthermore we have by hypothesis that
271
Tq(Nb+5(V)) is compact and by the Mazur theorem so is its closed con-
vex hull. Obviously h(T%(N_,.(V))) is contained in Ny (V), so wve
1
have fulfilled the hypotheses for Browder's theorem and can conclude
that T has a fixed point @ in Ny (V). It follows, of course,
1
that the solutions of equation (1) having ¢ as an initial function

is periodic of period w, so the proof of our theorem is complete.

Now defining G ‘to be a function mpping [0, =) x C_ x [0, €]
into Rn, where €, 1s some positive constant, we consider functional-

differential equations of the form

x(t) = 6(t, Hx, €). (5)



-18.

x(t) and IH} are defined for equation (1), and we suppose that

G(t, V¥, €) 1is continuous in each variable separately and periodic

in t of period w(e). ® is assumed to be a continuous function on
[0, el] and the existence of a positive continuous functional

p(t, ¥, €) defined on [0, ») X C X [0, € is assumed such that

1]
la(t, ¥, €) - G(t, ¥, O)| s € p(t, ¥, €), (6)

for ¢ sufficiently small. Furthermore, we assume the existence of
a continuous function IL(t) such that for arbitrary Py and Ps in

C, and t in {0, ©) we have

la(t, @1, 0) - G(t, 9, 0)| = L(t)loy - @, (7

Theorem 5. Iet the equation
2(t) = (s, Hz, 0) (8)

have a convex discretely asymptotically stably nonincreasing set

V with the domain of expansion of its domain of expansion strictly
contained in Co’ Suppose that equation (5) has a unique solution de-
fined for all t 2 0 corresponding to each initial function in Co and
each € in [0, el]. Suppose further that these solutions depend con-
tinuously on their initial data. Then for each e sufficiently small

equation (5) has a periodic solution x_  of period wle).
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Proof. ILet —N;T\f) denote the domain of expansion for V,
let w(e) = @, and for each t 20 1let g  denote the largest integer
multiple of w, not exceeding t. Our hypotheses clearly imply the
existence of a sequence ¢ of positive integers tending to infinity and
a constant ¢ > 0 such that if ¢ is contained in Nb+§(v)’ z is
the solution of equation (8) corresponding to @, and n 1is an arbi-
trary positive constant, then for all ¢ % sufficiently large and with
gt/a)o contained in o, Hgtz is contained in Nn(V). Since W is
strictly contaired in Co’ there exists a number 511, such that

0<8 < ¢t and N, (V)cc,. Let 5, 5, and 8, be such that

3 2
0<8 <8, < 85 <% and 9 in NSi(V) implies Hgtz is contained
in N,s (V) for i =1,2,3 and all t 2 0. Clearly condition (7)

i+l
implies that for arbitrary solutions z of equation (8) corresponding

to initial functions in N« (V) we have for t < £, + o, that
>3

t
z(t) = z(g,) + [ G(s-g,, Hz, O)ds,
Bt

and

t t
ezl = llﬂgzll + fgtlcr(s - &, 0, 0){as + fgtL(S - &) lEzlds.

Hence using Gronwall'ls lemma we have

w

‘ (o] t - E’t
Izl = (g =] + I la(s, 0, 0)|ds) exp ( I, L(s)as).
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Since Hg z is contained in Co for all t =20, it follows that
T

”Hg z|| = b, and the existence of a constant M, such that

t

|zl s, for all t =20 is clear. Now let t, and t, be two

positive numbers such that 0 < t2 - tl < w, but otherwise arbitrary.

We have that
ts
z(t2) - z(tl) = [ aG(s - £, » B2, 0)ds,
t 1
1
and
s s
|z(t,) = 2(t))| = [ lo(s - &, ,0,0)[ds + [ L(s-g, )l|H z[lds
ty 1 t, 1
Y2ty o=t
s J I"Gg(s, 0, 0)]ds + M S L(s)ds.
t. -t by -k
1756, 175,

Thus it is also clear that there exist a constant ¢, independent of

the particular choice of t, and t

1 o9 such that

J2(ty) - 2(t)] s clby - . (9)

et kKC N5 (V) De the set of all elements ¢ such that o,
)

and g, in [-r, 0] and @, # 6, imply |o(e,) - ®(e;))] <3cle, - o ].

Iet

K =1{:9 in Nb+8h(V), lo(e,) - @(6;)| = 2¢|e,-6,|, 6, and o, in [-7,0]}.
(10)
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Since the closure of K is compact we have as a consequence of
our asymptotically stably nonincreasing condition that we may choose
a constant 60 so that 0 < 80 < 61 and a positive integer q such
that @ in K and 2z the corresponding solution of equation (8) imply
that Hy, 2 is contained in K, N Ng (V) for all integers j 2z q and
containedoin G. °

Now for an arbitrary initial function ¢ in K let us consider

the corresponding solution z of equation (8) and the corresponding

solution x of equation (5). We have

t
X(t) - z(t) = J (G(S) st: €) - G(S: HSZ: 0))ds,
0

and using (6) and (7) we get

t t
|x(t) - z2(t)]| se [ p(s, Hx, e)ds + [ L(s)“ng - Héz”ds.
0 0

Thus

t %
lzx - Hezlls e jop(s, Hx, €)ds + fOL(s)HHEx - H_z[jds,

and again employing Gronwall's lemma it follows that

t s t

t
“Hix-Hfz” s e{fop(s,Héx,e)ds + jOL(s)[fop(v,Hvx,e)dv]exp(f L(v)dv)ds}. (11)
5

Since our set of initial functions K is conditionally compact it
follows that our functions Htx are contained in a compact set. Thus we

may assert the existence of a constant b& such that
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p(t, H X, €) = M, (12)

forall t in [0, qla.)o] where g, is a fixed integer greater than
g and x is allowed to be an arbitrary solution of equation (5) corres-
ponding to an initial function in K. Substituting (12) in (11) we can
clearly conclude that there exists a constant M, such that for all e

3

sufficiently small and all t = Q10 -

lgx - Hezll s e M. (13)

Thus we can assert the existence of a constant M such that
lix - Bzl = lBx - Bzl + 5z - Bzl ey, (14)

and

lggxll = e v+ |lHz],

for all € and |t -s| sufficiently small and t = q,w,. In particu-

lar we have

ey, =l = e M+ 15, 2l (15)

€ o

for € sufficiently small. In addition,choosing € such that

5, =8
e M < = 5 it follows that qu x 1is contained in the neighborhood of
€
Ng (V). Again choosing e sufficiently small and in particular such
1 8, -8, 63-62

that € M < min{

s —5 ), We have by (14) that if x corresponds
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to an initial function in N8 V) n K, then ij x 1s contained in the
€
neighborhood of Np (V) for all integers J such that o, =aq
1
81+5
2

such that O <’c2 - tl <(.l)o we have

la)o

where p, =b + . Now clearly for t, and t, in [0, ql/oo]

to

x(ta) - x(tl) = z(ta) - z(tl) + ft (G(s, Hx, €) - G(s, H .z, 0))as,
1
and using (6): (7)) (9)) (12): and (13) we have
t2 t2
c|‘l;:L - tel +e [ p(s, Bx, €)ds + [ L(s)IIHSx - Hszllds
tl tl

1A

lx(te) = X(tl)l

A

ety - t,| +e M, |t - t] +e M3L*|t2 -t 0,

where I* denotes the maximum value of L(t) on [0, qlmO]. Hence

obviously € can be chosen sufficiently small so that Htx for all solutions
x of equation (5) corresponding to initial functions in Ng (V) NK

3
we have lx(tz) -x(tl)l < 3¢ It2 - tll, wvhen t, and t, are contained

2
in [-r, g ] and # t,. That is, Ex in Ny (V) n K implies
Htx is contained in K for all t in [0, qla)o] when € 1is chosen
sufficiently small. It is clear from the continuity of w, of course,

that qa;e < ql‘”o for € chosen sufficiently small. Now let

Bc'> = Ny .5 V) n Kl’ and let B]’_, Bé, and B% denote the intersections
o 1

2
of Nal(v), N, (v), and N, (V) respectively with K where
2 3
51+8
p2=b+ 5 and p3=b+53.

We now define a mapping T_ on C, for each e in [0, el] by

the formula
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Te(cp) = Hw€ X,

where x, of course, is the solution of equation (5) with HX=0.
Clearly our hypothesis of continuous dependence on initial datea implies
Te is continuous and we have shown that Tg(Bi)(: Bé for all positive
integers k = q and TE(B%)(: Bé wvhen € 1is chosen sufficiently small.
Furthermore, the sets Bé, Bi, Bé, and B! have the same structure as

3

required for the sets B, B B,, and B

12 Bo of Theorem 3 respectively

3
and are interrelated in the same fashion. Therefore it follows from
Theorem 3 that Te has a fixed point Pe in Bé, and, of course, the
solution of equation (5) having ¢, as an initial function must be
periodic of period W, and our theorem is established.

The question of the "nearness" of periodic solutions of equation
(5) and (8) as € becomes small is not in general trivially answered.
We do know, however, that the hypotheses of Theorem 5 are not in general
sufficient to conclude that an arbitrary periodic solution of equation (8)
will have a small neighborhood containing periodic solution of equation
(5) for each € chosen sufficiently small. In fact, we can not even
conclude the existence of any periodic solutions of equation (8) with
this property. Subsequently in this paper we shall indicate in Lemms 2
what can be said with no additional hypotheses and then present several
theorems which indicate conditions and types of local behavior in a
neighborhood of a specified periodic solution of equation (8) which will
imply "nearby" periodic solutions for equation (5) when € 1is sufficiently
small., First, however, let us clarify what we shall mean by two periodic

functions with different periods being 'near'" each other.
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We begin by defining for some positive number P, the set of

functions

Q=uf{c(lo, p]) : » in (o, po]}.

For each pair of elements ¢ and ¥ in Q clearly ® is contained
in c([o, pl]) and ¥ is comtained in ([0, p2]) for some pair of
numbers p; and p, in [o, po]. | | is defired for each such pair

of elements in Q Dby the formula

v

lo - ¥l = sup{lo(p;7) - ¥(p7)| : 7 1in [0, 1]}. (mn

A periodic function x in C([0, =)) of period p; will be said to
be contained in an n-neighborhood, 1 >0, of a periodic function y of
period p, in C([0, w)) if the restricted functions xlpl and y|p2

are such that

Ixlp; - ylp,ll <,
where || || is taken in the sense of (17).

Iemma 2. Iet the hypotheses of Theorem 5 be satisfied and for
each e in [0, el] let Q_ denote the set of periodic solutions of
equation (5) of period w(e) corresponding to initial functions in a
subset S of Co contained in & domain of discrete asymptotic attrac-

tion of V. For an arbitrary positive constant Q C N Q. ) for
Tl > c TI 0



-26-

each ¢ sufficiently small.

Proof. It is clear from the proof of Theorem 5 that S may be
replaced by Kl without changing the structure of Qe when € 1is
chosen sufficiently small. The sets Qt-: are obviously compact and de-

fining the mapping
8 (p) =T () -9,

we bhave that "90(<P)“ >0 on K - N'q(Qo)' Hence since X - Nn(Qo) is
compact, it follows that there exist p > 0 such that IIGO(q))H zy for
x in K'.l. - Nn(Qo)' If € 1is chosen sufficiently small we may assert

that [8 (@) - 8,(@)fl <w/2 forall x in K - N(Q), so
le (@)l = lo (@)l - lle, (@) - 8 (@)l >u/2

for all ¢ in K, - Nn(Qo)' Therefore, it must be that Q. is con-

tained in N'q(Qe) for ¢ sufficiently small and our lemma is proved.
Let us now state a theorem which asserts that if x_ = 1s unique,

then perturbed systems of the form of equation (5) have periodic solu-

tions "near" X e

Theorem 6 . Iet the hypotheses of Theorem 5 be satisfied. Further-
more, suppose that X, is unique with respect to being a periodic solu-
tion of equation (8) of period ®, and with an initial function con-
tained in CO. Then every neighborhood of X, contains a periodic solu-

tion for equation (5) of period w, for each ¢ sufficiently small.
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Proof. Iet Q. be as defined in Lemma 2. Then by lemma 2,
for 1 an arbitrary positive constant, we bave that Q C N'q(Qo)
for each € sufficiently small. But by hypothesis Qo contains a
sirgle element @_, s0 Q_ is comtained in Nﬂ(q)o). Our theorem now
follows at once as a consequence of the continuous dependence of solutions
of equation (5) on € and initial data.

One may observe generally that if for 1 an arbitrary positive
constant we have that for each € sufficiently small that
Qo C Nn(Q‘e)’ then in every neighborhood of each periodic solution for
equation (8) of period W, there is at least one periodic solution

for equation (5) of period o, for each € sufficiently small.

Iemma 3. Iet u be a bounded interval, ¢ a positive constant,
and let X(C C(u) be the set of all elements x such that
Ix(tl) - x(t,)] = c|tl-t2 for all t, amd t, in u. Let L bea
comtinuous linear operator mapping X onto X. Furthermore, let & >1
be a constant and let S be a bounded open subset of X which contains
the zero element 0. If f dis a continuous function mapping S into X

for each € in some interval [0, ;] and such that
f(x, €) = L(x) + g(x) + ¢ p(x, €), (18)
where p(x, €) is continuous Jointly in its arguments and

g(x) = O(Hx”s) as |jx|]| -0, then for each € sufficiently small £(S)

contains a neighborhood of 0 which is open in X.
Proof. L bas a continuous linear inverse L-l, 80 we may write
L'lf(x, €) =x + L'lg(x) +€ L"lp(x, €). (19)

Ietting f*, g*, and p* denote L-lf, L-lg, and L-lp respectively

we have
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*(x, €) = x + g*(x) + ¢ p*(x, €).

Now let u >0 be such that ﬁ;ﬁ) NxC L(S) N5 and let M, amd
M, be positive constants such that for all x in Nu(O) nXx,

| g*(x)]| = Ml||x[|6 and |[[p*(x, €)|| = M,. Clearly we may choose 1 >0
so that ﬁ;@) nxC Nu(O) nx and M| </ forall x in
N—n?fﬁ N X. Now selecting an arbitrary element z in Nﬂ/l*(o) NX we

define the mapping
a(x, €) =z +x - £%(x, €) (20)

for x in anoi NX. Now

A

la(x, €)ll = flzll + flex(x)ll + ello*(x, €)ll

s /2 +¢ M,
so clearly for each € = i—z we have that q maps Nﬂ(o) N X into
itself. Thus by the Schauder fixed point theorem (or for that matter
by the Birkhoff-Kellogg fixed point theorem) q has a fixed point in
N (0) N X. That is, for each z in N 0) N X and each € = =L
there exists a point e in Nnioi N X such that we have

X, = q(xl, €) =z + X; - f*(xl, €),

which obviously implies 2z = £¥(x Hence we have shown that

1)
Nq/h(o) N X 1is contained in f*(Nn(oj N X) for each e sufficiently

small. But Nn/h(o) N X contained in f*(Nn205 N X) implies

L(Nr,/h(o) nx)C f(ir_n(_cn nx)C z£(8),
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and L being a homeomorphism implies L(Nq/h(o) N X) is open in
X. Therefore, the proof of our lemma is complete.

We shall now use Iemma 3> to obtain a rather comprehensive re-
sult on the continmuity of periodic solutions which should prove useful
in applications. The comditions imposed are of such a nature that one

might reasomably expect to be able to verify them in physical systems.

Theorem 7. Iet the hypotheses of Theorem 5 be satisfied, let X
denocte the linear extensions of Kl as defined by (10), and let L be
a continuous linear operator mapping X onto X. In addition, let
5>1 be a constant, let P, be an element in V, and let S be some

open subset of X containing Pye If for each @ in 3

Bprset L(e - 9,) +&(® -9, (21)

wvhere 2z 1is the solution of equation (8) corresponding to the initial
function ¢ and g(@ - ¢ ) = o(llp - cpoﬂa) as |lp - cpoll -0, then the
solution x_ of equation (8) corresponding to 9, 1s a periodic solu-
tion of period Wy Moreover, every neighborhood of X, contains a
periodic solution for equation (5) of period @ for each € suffi-

ciently small.

Proof. It is immediately obvious fram (21) that ¢, is a fixed
point under T (as defined by (16)) and consequently x_ 1s a periodic

solution for equation (8) of period . We therefore proceed to verify




=30-

that every neighborhood of X, contains a periodic solution for
equation (5) of period o, when € is sufficiently small. Consider-
ing T, (as defined by (16)) we observe that our hypotheses imply
that we may choose a positive constant p and € sufficiently small

so that

T (9) = T (9) + T (9) - T (o)
(22)

¢+ L(®-9,) * @ -0) + (T (9) - T, (9)),

for all ¢ in Nu(q>o) N X. Furthermore, (14%) implies that p may be

selected so that
T (®) - T (®) =€ a(e, €) (23)

for all @ in Nu(cpo) NX and e sufficiently small where q(p, €)

is continuous Jjointly in its arguments. Now define
8 (¥) = L(¥) + g(¥) +e a*(y, €), (24)

for ¥ in Nu(o) wheve aq*(¥, €) = q(@_ + ¥, €), and let 7 be
an arbitrary positive constant. By Iemma 3 we have that there exist a

positive constant ¢ such that

N, (0) C & (x (0))

so in particular O is contained in 8, (Nn(o)). That is, there is a

point ¥, in Nn(o) such that
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L(\l’l) + 3(4’1) + € q*(\l,l} €) = 0}

for each € sufficiently small amd letting ?; = \yl + o, we have

L(®, - 9,) *8(9; -9,) +€ afpy, €) = 0. (25)
But clearly (22) and (23) imply that

Te (cpl) = q)l = L(¢l = @o) + g(q)l = q)O) + € q(q)l’ €), (26)

so (25) implies T, (q)l) = @;. Therefore, since 7 was chosen arbi-
trarily and @, is contained in Nn((p 0) it follows that every neighbor-
hood of P, contains a fixed point of Te for each ¢ sufficiently
small. Since we have that solutions of equation (5) depend continuously
on their initial data we may conclude, of course, that every neighbor-
hood of X, contains a periodic solution for equation (5) of period

. for each ¢ sufficiently small and our proof is complete.
Iet us now extend somewhat the results of Iemma 3.

Iemma 4. Iet the hypotheses of Lemma 3 be satisfied and for each
€ in [0, €] let g  denote the set of points x in § such that
f(x, €) =0 and let ¢ = ule, : e in [0, el]}. Then O is contained
in 6 and the component 6% of 0 containing O intersects ee for
each € sufficiently smll. Furthermore, if 6 is totally discon-

nected in an open neighborhood of 0 in X for e sufficiently small,
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then there is a continuous function ¢(¢) mapping some interval
[0, e I, e, >0, into X such that for every ¢ in [0, € ],

r(g(e), €) = 0.

Proof. It is obvious that f£(0, 0) =0 so O is contained in
6. Suppose one can select € arbitrarily small so that &% N ee is
empty. Then since &% and ee are closed, there exist n >0 such
that Nn(e*) n Nn(ee) is empty. But Nn(o) is contained in Nn(e*)
and there is a neighborhood Nu(o) Cz (Nn(o)) for all € suffi-
ciently small which, of course, implies NTI(O) and 6 intersect
for all € sufficiently small., Thus we have contradicted our supposi-
tions and can therefore conclude the existence of a constant €s such
that for all € in [0, € ], 6% N g, is not empty. If, in addition,
ee is totally disconnected in an open neighborhood of O in X for
€ sufficiently small, we may choose € such that 6% N 8, consist
of a single element for each € in [0, eo]. Defining ¢ on [0, eo]

by the formula

t(e) =exne,

it is clear that ¢ is continuous and such that f(g¢(e), €) = O. There-
fore the proof of our lemma is complete.

Now with ILemme 4 as a tool we extend the results of Theorem 7.

Theorem 8. Iet the hypotheses of Theorem 7 be satisfied and
let Ye for each ¢ in [0, el] denote the set of periodic solutions

for equation (5) of period ®., and let
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¥=uUY : e in [0, e 1].

There exists a connected subset ¥* of ¥ which contains X, and
intersects Ye for each € sufficiently small. Furthermore, if

Ye intersected with some open neighborhood of X, is totally discon-
nected for each € sufficiently small, then there exists a continuous
function ¢(€) mapping some interval [O, eo], €, >0, into ¥ such
that for every € in [0, eo], t(e) is a periodic solution for

equation (5) of period @ .

Proof. With S defined as in Theorem 7 let ee denote the set
of points ¥ in S - ¢, such that Be(w) =0 foreach e in [0, el]
where ©_ is as defined by (24). Employing Iemma 4 we have that the
component &% of the set 6 = {ee t e in [0, 61]} which contains O
intersects 6 for each € 1in some interval [0, eo]. Hence using
(25) and (26) we have Te(cp) =@ foreach @ in g*+¢ and € in
(o, eo]. Defining ¥* +to be the set of solutions of equation (5)
corresponding to initial functions in &% + cpo it follows from our hypo-
thesis of continuous dependence on initial data that ¥* is connected,
contained X, and intersects Y(-: for each € sufficiently small., If
Ye intersected with some open neighborhood of X, is totally disconnected
for each € sufficiently small, then we may choose €, 8o that

¥ i Ye consists of a single point for each € in [0, eo]. Defining

the function ¢ on [0, eo] by the formula

t(e) = ¥¢ N ¥,
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we may observe that ¢ 1is continuous and obviously for each € in
(o, eo], ¢(e) is a periodic solution for equation (5) of period w, .
Therefore our theorem is proved.

We remark that Theorem 7 and Theorem 8 are merely suggestive of
the types of results which are possible to obtain concerning the con-
tinuity of periodic solutions under perturbations. The very powerful
results of Schauder and Ieray on the local degree for continuous dis-
placenents and the many extensions of this work of more recent origin
provide excellent tools for the analysis of such questions. In parti-
cular, the theory surrounding the notion of a fixed point index is very
useful. The reader interested in such questions of continuity and
"nearness" may profitably refer to references [10], [11], [12], [13],
[14], [15] and [16].

In conclusion let us mention another interesting and important
question associated with periodic behavior for solutions of functional-
differential equations of the type considered in this paper. This is,
the establishment of ‘the existence of periodic solutions which are
necessarily nontrivial in the sense of not being constant functions ) we
remark that if one imposes a type of uniform instability in a neighbor-
hood of initial functions which yield constant solutions together with
the hypotheses of Theorem 5,then it is possible in many situations to
establish the existence of nontrivial solutions using the techniques

employed in Theorem 2 of [6].
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